Page 1 of 10

[bookmark: _GoBack]
King Fahd University of Petroleum & Minerals
College of Computer Science and Engineering
Information and Computer Science Department
Second Semester 182 (2018/2019)

ICS 202 – Data Structures
SOLUTION to Major Exam 1
Monday, February 11th, 2019
Time: 90 minutes

Name: __

	ID#
	
	
	
	
	
	
	
	
	

	Section 01 and 02

	
	Question #
	Max Marks
	Marks Obtained

	Mr. Faisal
	
	1
	20
	

	
	
	2
	20
	

	Section 04
	
	3
	30
	

	Dr. Sami
	
	4
	30
	

	
	
	Total
	100
	

	
	

Instructions
1. Write your name and ID in the respective boxes above and circle your section.
2. This exam consists of 9 pages, including this page, plus one double-sided reference sheet.
3. This exam consists of 4 questions. You have to answer all the 4 questions.
4. The exam is closed book and closed notes. No calculators or any helping aids are allowed.
5. Make sure you turn off your mobile phone and keep it in your pocket if you have one.
6. The questions are not equally weighed.
7. The maximum number of points for this exam is 100.
8. You have exactly 90 minutes to finish the exam.
9. Make sure your answers are readable.
10. If there is no space on the front of the page, feel free to use the back of the page. Make sure you indicate this in order not to miss grading it.

Q.1 (20 points)

a) (3 points) Measuring the complexity of a program can be done by measuring its execution time in milliseconds. List the advantages and limitations of such approach.

The advantages of measuring execution time is simplicity and precision.
The main limitation is that execution time does not only depend on the algorithm of the program but also on the hardware specification where the program runs.

b) (3 points) Is it possible that a program whose complexity is O(n5) runs faster than a program whose complexity is in O(n) ? If the answer is no say why. If the answer is yes give an example.

Yes. For example n5/100000 runs faster than 100000n for n < 100000.

c) (3 points) Order these classes of complexity from lowest to highest: O(n log n), O(an), O(nx), O(1), O(nn), O(n!), O(n), O(log n).

O(1) < O(log n) < O(n) < O(n log n) < O(nx) < O(an) < O(n!) < O(nn)

d) (5 points) State the big-O complexity of each of these data structures for each of the following methods:

	
	addFirst
(addToHead)
	addLast
(addToTail)
	deleteFirst
(deleteHead)
	deleteLast
(deleteTail)
	insert1
	delete2

	SinglyLinkedList
	O(1)
	O(1)
	O(1)
	O(n)
	O(n)
	O(n)

	DoublyLinkedList
	O(1)
	O(1)
	O(1)
	O(1)
	O(n)
	O(n)

	Array implementation
of List3
	O(n)
	O(1)
	O(n)
	O(1)
	O(n)
	O(n)

1. The insert method inserts a new element in a specific position (given as a parameter).
2. The delete method deletes a given element (given as parameter) from the list.
3. The Array implementation should not contain gaps (empty cells)

e) (3 points) State the big-O complexity of each of these Stack data structures for each of the following methods:

	
	push
	pop
	topEl
	toString

	Stack as SingleLinkedList
	1
	1
	1
	n

	Stack as DoubleLinkedList
	1
	1
	1
	n

	Stack as Array
	1
	1
	1
	n

f) (3 points) State the big-O complexity of each of these Queue data structures for each of the following methods:

	
	enqueue
	dequeue
	firstEl
	toString

	Queue as Array
	1
	n
	1
	n

	Queue as CircularArray
	1
	1
	1
	n

	Queue as SingleLinkedList
	1
	1
	1
	n

Q.2 (20 points) Consider the following Binary Search implementation on a SingleLinkedList:

	public int binarySearch(SLL<T> list, T target) {
		int size = list.size();
		int lo = 0, mid, hi = size-1;
		while (lo <= hi) {
			mid = (lo + hi)/2;
			midValue = list.get[mid];
			if (target < midValue)
				hi = mid - 1;
			else if (target > midValue)
				lo = mid + 1;
			else return mid; // success
		} 			
		return -1; 	// failure
	}
a) (4 points) Size() method returns the number of nodes in the SLL list. What is the complexity of the method size() in the best case, in the worst case, and in the average case ? Justify your answer.

O(n)

Consider the following get method implementation in class SLL that returns the element at the k’th position of the SLL list. Note that indices start from 0.

public T get(int k) {

if (n < 0 || n >= this.size())
	throw new Exception();

SLLNode<T> temp = head;

for(int i=0; i<k; i++,temp = temp.next);

return temp.info;

}

b) (4 points) What is the complexity of the method get ? Show your computation.

O(n)

c) (6 points) By counting the number of times the instruction temp = temp.next in the get method is executed in the worst case, compute the complexity of binarySearch in the worst case.

Hint: the worst case happens when the target is at the last position of the linked list.

[image:]

d) (6 points) By counting the number of times the instruction temp = temp.next in the get method is executed in the best case, compute the complexity of binarySearch in the best case.

Hint: the best case happens when the target is at the first position of the linked list.

If the answer is one of the two following answers, it is graded as correct.

The best case is when the target is in the middle position of the linked list (index n/2). The number of times temp = temp.next will get executed is n/2 which is O(n).

However, when the target is at the first index of the linked list (index 0), which is the best of all worst cases, the complexity is computed as follows:

[image:]

Q. 3: (a) [20 points] Consider a doubly linked list represented by the class DLL<T> as shown in the reference sheet. Design and implement the following two methods:

(i) moveForward moves the elements of the linked list by one element towards the tail.
(ii) moveBackward moves the elements of the linked list by one element towards the head.

The effect of these methods is shown here (initial linked list):

3
4
7
8
1
2
5
null
head
tail

[After applying myList.moveForward to the initial linked list]

5
3
4
7
8
1
2
null
head
tail

[After applying myList.moveBackward to the initial linked list]

4
7
8
1
2
5
3
null
head
tail

Do not use the methods addToHead, addToTail, deleteFromHead, deleteFromTail.
Instead, directly manipulate list nodes/pointers for both the methods.

[image:]

[image:]

Q. 3(b) [10 points] What is the big-O time complexity of both your methods in terms of list size n. Justify your answers

[image:]

Q. 4 (a) [20 points] Write a method public boolean isPalindrome(String s) that determines whether an input string s is a palindrome or not. [A palindrome is a string that reads the same forwards and backwards. For example: madam and level are palindromes, but civil and pool are not]. Do not use arrays or any other data structure for this program except Stacks. Consider using multiple stacks.

[image:]

Q. 4(b) [10 points] Given the following infix expression:

14*8 + (8/4 – 3)

(i) Give the equivalent postfix expression.

[image:]

(ii) Using a stack, evaluate this postfix expression (Give contents of stack at each stage).
[The first two rows are just examples for the expression 2 3 *]

	Stack Contents
	Operations

	2 3
	Push 2, Push 3, Remaining Expression: *

	6
	Pop (3), Pop (2), 3*2 = 6, Push(6)

[image:]

Quick Reference Sheet

	
public class SLLNode<T> {
 public T info;
 public SLLNode<T> next;
 public SLLNode();
 public SLLNode(T el)
 public SLLNode(T el, SLLNode<T> ptr);
}

public class SLL<T> {
 protected SLLNode<T> head, tail;
 public SLL();
 public boolean isEmpty();
 public void addToHead(T el);
 public void addToTail(T el);
 public T deleteFromHead();
 public T deleteFromTail();
 public void delete(T el);
 public void printAll();
 public boolean isInList(T el);
}

public class DLLNode<T> {
 public T info;
 public DLLNode<T> next, prev;
 public DLLNode();
 public DLLNode(T el);
 public DLLNode(T el, DLLNode<T> n,
 DLLNode<T> p);
}

public class DLL<T> {
 private DLLNode<T> head, tail;
 public DLL();
 public boolean isEmpty();
 public void setToNull();
 public void addToHead(T el);
 public void addToTail(T el);
 public T deleteFromHead();
 public T deleteFromTail();
 public void delete(T el);
 public void printAll();
 public boolean isInList(T el);
}

	
[image:]

[image:]

[image:]

[image:]

image1.png

image2.jpg
T why c{ E s G\M/'— ('7«»4;9«" Vﬁ cxtc.f}o/ NI

i

|

]

-~
-

€\~ wofqt ce e

\
L S
= u ?

A4} m
A + V\—\:\——- - V\—Li - . e V\-——;

2 2%+ z 2

"
14

v =

2-

A
fo\ - N _—I]:——'
Z.

<=1

fXV\ - VA <.2 - __‘__—
.ZV‘o\

YV < Y\ — ng\ + W
.Zv-n

Y}(V\ _~ZY\ + Zn
.ZV‘

2N

fX\/_’QY\-'- ___70..)“‘

v\(o\j/_‘e\/_,, —

n

In

O~ 50

JV\,éV\+L

\

image3.jpg
The wbr | G i . Ba . yont P 4
i*w*éu/((a/l/(/:% Tt e

\ wn
2z N U " T * e
I Y o
N
z A + .v\/ -~ /——-A - -7 L_
a .é,L 5‘23 zr
v o,
z W\ '_/7: —_—
. <

image4.emf

image5.emf

image6.emf

image7.emf

image8.emf

image9.emf

image10.png
Zee[Ei)-ctn-men

oo n(n+l)
o)

=

n(n+1)(2n+1)

image11.png
Ina

log, e = — logab =loga + logb

image12.png
@
logg =loga—logh , al%®=

(ab)°= (@) = @b*

image13.png

